Муниципальное автономное общеобразовательное учреждение Бутурлинская средняя общеобразовательная школа имени В.И. Казакова

Утверждено

приказом директора МАОУ Бутурлинской СОШ им. В.И. Казакова

от «24» августа 2018 г. № 295

РАБОЧАЯ ПРОГРАММА по геометрии 10-11 класс

Составил:

учитель первой квалификационной категории Ерин Андрей Константинович

2018 год р.п. Бутурлино

Пояснительная записка

Рабочая программа по геометрии для 10-11 класса составлена на основе государственного стандарта среднего (полного) общего образования (приказ МоиН РФ от 05.03.2004 г. №1089), «Программы общеобразовательных учреждений. Геометрия, 10-11 класс — М.: Просвещение, 2009./Сост. Т.А. Бурмистрова», методических рекомендаций.

Изучение математики в старшей школе на базовом уровне направлено на достижение следующих целей:

- формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
- развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;
- **овладение математическими знаниями и умениями**, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
- **воспитание** средствами математики культуры личности: отношения к математике как части общечеловеческой культуры: знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.

Цели и задачи изучения геометрии в 11 классе:

Способствовать формированию умения выполнять дополнительные построения, сечения, выбирать метод решения, анализировать условие задачи;

содействовать овладению новыми понятиями, переводу аналитической зависимости в наглядную форму и обратно;

воспитывать ответственность, волевые качества, коммуникативную культуру.

В ходе изучения курса учащиеся закрепляют сведения о векторах и действиях над ними, рассматривают понятие компланарных векторов и учатся раскладывать любой вектор по трем некомпланарным векторам; решают задачи на вычисление углов между прямыми и плоскостями; получают систематические сведения об основных телах и поверхностях вращения; изучают понятие объёма тела и решают задачи на применение формул объёмов основных многогранников и круглых тел; в рамках повторения рассматривают вопросы для подготовки к итоговой аттестации.

Программа соответствует учебнику **Геометрия**, 10-11 : Учеб. для общеобразоват. учреждений / Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др. – 15-е изд. – М. : Просвещение, 2010 Преподавание ведется по первому варианту — 1,5 часа в неделю, 34 рабочие недели, всего 51 час.

10 класс

Соответствие распределения часов по темам авторской и рабочей программы

№	Тема, раздел	Кол-во часов		комментарий
		программа	Рабочая	
			программа	
1	Введение	3	3	
2	Параллельность прямых и плоскостей	16	16	
3	Перпендикулярность прямых и	17	17	
	плоскостей			
4	Многогранники	12	12	
5	Повторение курса геометрии 10 класса	3	3	
	ОЛОТИ	51	51часов, из них	
			К.Р. – 3ч	

Содержание обучения.

Геометрия.

1. Введение

Предмет стереометрии. Аксиомы стереометрии. Некоторые следствия из аксиом.

Основная цель — познакомить учащихся с содержанием курса стереометрии, с основными понятиями и аксиомами, принятыми в данном курсе, вывести первые следствия из аксиом, дать представление о геометрических телах и их поверхностях, об изображении пространственных фигур на чертеже, о прикладном значении геометрии.

Изучение стереометрии должно базироваться на сочетании наглядности и логической строгости. Опора на наглядность — непременное условие успешного усвоения материала, и в связи с этим нужно уделить большое внимание правильному изображению на чертеже пространственных фигур. Однако наглядность должна быть пронизана строгой логикой. Курс стереометрии предъявляет и этом отношении более высокие требования к учащимся. В отличие от курса планиметрии здесь уже с самого начала формулируются аксиомы о взаимном расположении точек, прямых и плоскостей в пространстве, и далее изучение свойств взаимного расположения прямых и плоскостей проходит на основе этих аксиом. Тем самым задается высокий уровень строгости в логических рассуждениях, который должен выдерживаться на протяжении всего курса.

2. Параллельность прямых и плоскостей

Параллельность прямых, прямой и плоскости. Взаимное расположение двух прямых в пространстве. Угол между двумя прямыми. Параллельность плоскостей. Тетраэдр и параллелепипед.

Основная цель — сформировать представления учащихся о возможных случаях взаимного расположения двух прямых в пространстве (прямые пересекаются, прямые параллельны, прямые скрещиваются), прямой и плоскости (прямая лежит в плоскости, прямая и плоскость пересекаются, прямая и плоскость параллельны), изучить свойства и признаки параллельности прямых и плоскостей.

Особенность данного курса состоит в том, что уже в первой главе вводятся в рассмотрение тетраэдр и параллелепипед и устанавливаются некоторые их свойства. Это дает возможность отрабатывать понятия параллельности прямых и плоскостей (а в следующей главе также и понятия перпендикулярности прямых и плоскостей) на этих двух видах многогранников, что, в свою очередь, создает определенный задел к главе «Многогранники». Отдельный пункт посвящен построению на чертеже сечений тетраэдра и параллелепипеда, что представляется важным как для решения геометрических задач, так и, вообще, для развития пространственных представлений учащихся.

В рамках этой темы учащиеся знакомятся также с параллельным проектированием и его свойствами, используемыми при изображении пространственных фигур на чертеже.

3. Перпендикулярность прямых и плоскостей

Перпендикулярность прямой и плоскости. Перпендикуляр и наклонные. Угол между прямой и плоскостью. Двугранный угол. Перпендикулярность плоскостей.

Основная цель — ввести понятия перпендикулярности прямых и плоскостей, изучить признаки перпендикулярности прямой и плоскости, двух плоскостей, ввести основные метрические понятия: расстояние от точки до плоскости, расстояние между параллельными плоскостями, между параллельными прямой и плоскостью, расстояние между скрещивающимися прямыми, угол между прямой и плоскостью, угол между двумя плоскостями, изучить свойства прямоугольного параллелепипеда.

Понятие перпендикулярности и основанные на нем метрические понятия (расстояния, углы) существенно расширяют класс стереометрических задач, появляется много задач на вычисление, широко использующих известные факты из планиметрии.

4. Многогранники

Понятие многогранника. Призма. Пирамида. Правильные многогранники.

Основная цель — познакомить учащихся с основными видами многогранников (призма, пирамида, усеченная пирамида), с формулой Эйлера для выпуклых многогранников, с правильными многогранниками и элементами их симметрии.

С двумя видами многогранников — тетраэдром и параллелепипедом — учащиеся уже знакомы. Теперь эти представления расширяются. Многогранник определяется как поверхность, составленная из многоугольников и ограничивающая некоторое геометрическое тело (его тоже называют многогранником). В связи с этим уточняется само понятие геометрического тела, для чего вводится еще ряд новых понятий (граничная точка фигуры, внутренняя точка и т. д.). Усвоение их не является обязательным для всех учащихся, можно ограничиться наглядным представлением о многогранниках.

5. Повторение. Решение задач

Требования к уровню подготовки учащихся

В результате изучения математики на базовом уровне ученик должен

знать/понимать:

- значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
- универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
- вероятностный характер различных процессов окружающего мира.
 ГЕОМЕТРИЯ

Уметь:

- распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
- описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
- анализировать в простейших случаях взаимное расположение объектов в пространстве;
- изображать основные многогранники и круглые тела, выполнять чертежи по условиям задач;
 - строить простейшие сечения куба, призмы, пирамиды;
- решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);

использовать при решении стереометрических задач планиметрические факты и методы;

• проводить доказательные рассуждения в ходе решения задач.

<u>Использовать приобретенные знания и умения в практической деятельности и</u> повседневной жизни для:

- исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
- вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.

11 класс

Требования к уровню подготовки учащихся: В результате изучения математики на базовом уровне ученик должен

знать/понимать

- значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
- универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

уметь

- распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
- описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
- анализировать в простейших случаях взаимное расположение объектов в пространстве;
- изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
- строить простейшие сечения куба, призмы, пирамиды;
- решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
- использовать при решении стереометрических задач планиметрические факты и методы;
- проводить доказательные рассуждения в ходе решения задач;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
- вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.

В результате изучения геометрии в 11 классе ученик должен знать и уметь:

- соотносить плоские геометрические фигуры и трехмерные объекты с их описаниями, чертежами, изображениями; различать и анализировать взаимное расположение фигур;
- изображать геометрические фигуры и тела, выполнять чертеж по условию задачи;
- решать геометрические задачи, опираясь на изученные свойства планиметрических и стереометрических фигур и отношений между ними, применяя алгебраический и тригонометрический аппарат;
- проводить доказательные рассуждения при решении задач, доказывать основные теоремы курса;
- вычислять линейные элементы и углы в пространственных конфигурациях, площади поверхностей пространственных тел и их простейших комбинаций;
- применять координатно-векторный метод для вычисления отношений, расстояний и углов;
- строить сечения многогранников.

Тематическое планирование

N	Название разделов и тем	Всего	Кол-во часов	Количество контрольных
				работ
1	Векторы в пространстве	6	6	
2	Метод координат в пространстве	11	10	1
3	Цилиндр, конус, шар	13	12	1
4	Объемы тел	15	14	1
5	Повторение курса геометрии	6	6	

Содержание программы учебного предмета.

1. Векторы в пространстве. (6 ч) Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы

О с н о в н а я $\$ ц е л ь — закрепить известные учащимся из курса планиметрии сведения о $\$ векторах и действиях над ними, ввести понятие компланарных векторов в пространстве и рассмотреть вопрос о разложении любого вектора по трем некомпланарным векторам.

Основные определения, относящиеся к действиям над векторами в пространстве, вводятся так же, как и для векторов на плоскости. Поэтому изложение этой части материала является достаточно сжатым. Более подробно рассматриваются вопросы. Характерные для векторов в пространстве: компланарность векторов, правило параллелепипеда сложения трех некомпланарных векторов, разложение вектора по трем некомпланарным векторам.

2. Метод координат в пространстве. (11ч) Координаты точки и координаты вектора. Скалярное произведение векторов. Движения.

О с н о в н а я ц е л ь – сформировать умение учащихся применять векторнокоординатный метод к решению задач на вычисление углов между прямыми и плоскостями и расстояний между двумя точками, от точки до плоскости.

Данный раздел является прямым продолжением предыдущего. Вводится понятие прямоугольной системы координат в пространстве, даются определения координат точки и вектора, рассматриваются простейшие задачи в координатах. Затем вводится скалярное произведение векторов(без док-ва, см. планиметрию) и выводятся формулы для вычисления углов между двумя прямыми, между прямой и плоскостью. Дан также вывод уравнения плоскости и формулы расстояния от точки до плоскости. В конце раздела изучаются движения в пространстве: центральная, осевая, зеркальная симметрии.

3. Цилиндр, конус, шар. (13 ч) Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса. Площадь поверхности конуса. Усеченный конус. Сфера и шар. Уравнение сферы. Взаимное расположение сферы и плоскости. Касательная плоскость к сфере. Площадь сферы.

О с н о в н а я $\$ ц е л ь $\$ дать учащимся систематические сведения об основных телах и поверхностях вращения - цилиндре, конусе, сфере, шаре.

Изучение круглых тел и их поверхностей завершает знакомство учащихся с основными пространственными фигурами. Вводятся понятия цилиндрической и конической поверхностей, цилиндра, конуса, усеченного конуса. С помощью разверток определяются площади их боковых поверхностей, вводятся соответствующие формулы. Затем даются определения сферы и шара, выводится уравнение сферы и с его помощью исследуется вопрос о взаимном расположении сферы и плоскости. Площадь сферы определяется как предел последовательности площадей описанных около сферы многогранников при стремлении к нулю наибольшего размера каждой грани. В задачах рассматриваются различные комбинации круглых тел и многогранников, в частности, описанные и вписанные призмы и пирамиды.

4.Объёмы тел. (**15 ч**) Объём прямоугольного параллелепипеда. Объемы прямой призмы и цилиндра. Объёмы наклонной призмы, пирамиды и конуса. Объём шара и площадь сферы. Объёмы шарового сегмента, шарового слоя и шарового сектора.

О с н о в н а я ц е л ь – ввести понятие объёма тела и вывести формулы для вычисления объёмов основных многогранников и круглых тел. Понятие объёма тела вводится аналогично понятию площади плоской фигуры. Формулируются основные свойства объёмов и на их основе выводится формула объёма прямоугольного параллелепипеда, прямой призмы и цилиндра. Формулы объёмов других тел выводятся с помощью интегральной формулы. Формула объёма шара используется для вывода формулы площади сферы.

5. Повторение (6ч).

О с н о в н а я ц е л ь – повторить и обобщить материал, изученный в 10-11 классе

Методическая литература

- 1. «Программа общеобразовательных учреждений. Алгебра и начала анализа. 10-11 классы, М.Просвещение, 2009. Составитель Т. А. Бурмистрова»
- 2. Геометрия 10 -11. Учебник для общеобразовательных учреждений.

Авторы: Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, Л. С. Киселева, Э. Г. Позняк— М.: Просвещение, 2007.

- 3. «Поурочные разработки по геометрии 11 класс к учебному комплекту Л. С. Атанасяна. Дифференцированный подход, М. Вако 2009. Автор В. А. Яровенко».
- 4. «Дидактические материалы по геометрии 11 класс, М. Просвещение 2009. Автор Б. Г. Зив».

Интернет-ресурсы:

- 1. Министерство образование РФ: http://www.ed.ru/ http://www.edu.ru
- 2. Тестирование online: 5-11 классы: http://www.kokch.kts.ru/cdo
- 3. Досье школьного учителя математики: http://www.mathvaz.ru
- 4. Новые технологии в образование: http://www.edu.secna.ru
- 5. Мегаэнциклопедия Кирилла и Мефодия: http://www.mega.km.ru
- 6. Сайты «Энциклопедий»: http://www.rubricon.ru http://www.encyclopedia.ru
- 7. Сайт для самообразования и он-лайн тестирования: http://www.bztest.ru